Blog

Ameaças encontradas

Dissecação do hack do SolarWinds sem o uso de assinaturas

Default blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog imageDefault blog image
06
Jan 2021
06
Jan 2021

For a high-level explanation of the SolarWinds hack, watch our video below.

The SUNBURST malware attacks against SolarWinds have heightened companies’ concerns about the risk to their digital environments. Malware installed during software updates in March 2020 has allowed advanced attackers to gain unauthorized access to files that may include customer data and intellectual property.

Darktrace does not use SolarWinds, and its operations remain unaffected by this breach. However, SolarWinds is an IT discovery tool that is used by a significant number of Darktrace customers. In what follows, we explore a set of Darktrace detections that highlight and alert security teams to the types of behaviors related to this breach.

This is not an example of a SolarWinds compromise, but examples of anomalous behaviors we can expect to see from this type of breach. These examples stress the value of self-learning Cyber AI capable of understanding the evolving normal ‘patterns of life’ within an enterprise – as opposed to a signature-based approach that looks at historical data to predict today’s threat.

As Darktrace detects device activity patterns rather than known malicious signatures, detecting use of these techniques will fall into the scope of Darktrace’s capabilities without further need for configuration. The technology automatically clusters devices into ‘peer groups’, allowing it to detect cases of an individual device behaving unusually. Using a self-learning approach is the best possible mechanism to catch an attacker who gains access into your systems using a degree of stealth so as to not trigger signature-based detection.

A number of these models may fire in combination with other models in order to make a strong detection over a time-series – and this is exactly where Darktrace’s autonomous incident triage capability, Cyber AI Analyst, plays a crucial role in investigating the alerts on behalf of security teams. Cyber AI Analyst saves critical time for security teams, and its results should be treated with a high priority during this period of vigilance.

How SolarWinds was detected with AI

We want to focus on the most sophisticated details of the hands-on intrusion that in many cases followed the initial automated attack. This post-exploitation part of the attack is much more varied and stealthy. These stages are also near-impossible to predict, as they are driven by the attacker’s intentions and goals for each individual victim at this stage – making the use of signatures, threat intelligence or static use cases virtually useless.

While the automated, initial malware execution is a critical initial step to understand, the behavior was pre-configured for the malware and included the download of further payloads and the connection to domain-generation-algorithm (DGA) based subdomains of avsvmcloud[.]com. These automated first stages of the attack have been sufficiently researched in depth by the community. This post is not aiming to add anything to these findings, but instead takes a look at the potential post-infection activities.

Malware / C2 domains

The threat-actor set the hostnames on their later-stage command and control (C2) infrastructure to match a legitimate hostname found within the victim’s environment. This allowed the adversary to blend into the environment, avoid suspicion, and evade detection. They further used C2 servers in geopolitical proximity to their victims, further circumventing static geo-based trusts lists. Darktrace is unaffected by this type of tradecraft as it does not have implicit, pre-defined trust of any geo-locations.

This would be very likely to trigger the following Darktrace Cyber AI models. The models were not specifically designed to detect SolarWinds modifications but have been in place for years – they are designed to detect the subtle but significant attacker activities occurring within an organization’s network.

  • Compromise / Agent Beacon to New Endpoint
  • Compromise / SSL Beaconing to New Endpoint
  • Compromise / HTTP Beaconing to New Endpoint*

*The implant uses SSL, but may be identified as HTTP if using a proxy.

Lateral movement using different credentials

Once the attacker gained access to the network with compromised credentials, they moved laterally using multiple different credentials. The credentials used for lateral movement were always different from those used for remote access.

This very likely would trigger the following Cyber AI models:

  • User / Multiple Uncommon New Credentials on Device
Figure 1: Example breach event log showing anomalous (new) logins from a single device, with multiple user credentials
  • User / New Admin Credentials on Client
Figure 2: Example breach event log showing anomalous admin login

Temporary file replacement and temporary task modification

The attacker used a temporary file replacement technique to remotely execute utilities: they replaced a legitimate utility with theirs, executed their payload, and then restored the legitimate original file. They similarly manipulated scheduled tasks by updating an existing legitimate task to execute their tools and then returned the scheduled task to its original configuration. They routinely removed their tools – including the removal of backdoors once legitimate remote access was achieved.

This would be very likely to trigger the following Cyber AI models:

  • Anomalous Connection / New or Uncommon Service Control
Figure 3: Example breach showing uncommon service control
  • Anomalous Connection / High Volume of New or Uncommon Service Control
Figure 4: Example breach showing 10 uncommon service controls
  • Device / AT Service Scheduled Task
Figure 5: Breach event log shows new AT service scheduled task activity
  • Device / Multiple RPC Requests for Unknown Services
Figure 6: Breach shows multiple binds to unknown RPC services
  • Device / Anomalous SMB Followed By Multiple Model Breaches
Figure 7: Breach shows unusual SMB activity, combined with slow beaconing
  • Device / Suspicious File Writes to Multiple Hidden SMB Shares
Figure 8: Breach shows device writing .bat file to temp folder on another device
  • Unusual Activity / Anomalous SMB to New or Unusual Locations
Figure 9: Breach shows new access to SAMR, combined with SMB Reads and Kerberos login failures
  • Unusual Activity / Sustained Anomalous SMB Activity
Figure 10: Breach shows significant deviation in SMB activity from device

SolarWinds breach remembered

By understanding where credentials are used and which devices talk to each other, Cyber AI has an unprecedented and dynamic understanding of business systems. This empowers it to alert security teams to enterprise changes that could indicate cyber risk in real time.

These alerts demonstrate how AI learns ‘normal’ for the unique digital environment surrounding it, and then alerts operators to deviations, including those that are directly relevant to the SUNBURST compromise. It further provides insights into how the attacker exploited those networks that did not have the appropriate visibility and detection capabilities.

On top of these alerts, Cyber AI Analyst will also be automatically correlating these detections over time to identify patterns, generating comprehensive and intuitive incident summaries and significantly reducing triage time. Reviewing Cyber AI Analyst alerts should be given high priority over the next several weeks.


NEWSLETTER

Curtiu e quer mais?

Stay up to date on the latest industry news and insights.
Você pode cancelar a inscrição a qualquer momento. Política de privacidade
DENTRO DO SOC
Os analistas cibernéticos da Darktrace são especialistas de classe mundial em inteligência de ameaças, caça de ameaças e resposta a incidentes, e fornecem suporte 24/7 SOC a milhares de Darktrace clientes em todo o mundo. Dentro do SOC é de autoria exclusiva desses especialistas, fornecendo análises de incidentes cibernéticos e tendências de ameaças, com base na experiência do mundo real na área.
AUTOR
SOBRE O AUTOR
Max Heinemeyer
Chief Product Officer

Max is a cyber security expert with over a decade of experience in the field, specializing in a wide range of areas such as Penetration Testing, Red-Teaming, SIEM and SOC consulting and hunting Advanced Persistent Threat (APT) groups. At Darktrace, Max is closely involved with Darktrace’s strategic customers & prospects. He works closely with the R&D team at Darktrace’s Cambridge UK headquarters, leading research into new AI innovations and their various defensive and offensive applications. Max’s insights are regularly featured in international media outlets such as the BBC, Forbes and WIRED. When living in Germany, he was an active member of the Chaos Computer Club. Max holds an MSc from the University of Duisburg-Essen and a BSc from the Cooperative State University Stuttgart in International Business Information Systems.

share this article
Cobertura de Core
Nenhum item encontrado.

More in this series

Nenhum item encontrado.

Blog

Dentro do SOC

Protecting Prospects: How Darktrace Detected an Account Hijack Within Days of Deployment

Default blog imageDefault blog image
28
Sep 2023

Cloud Migration Expanding the Attack Surface

Cloud migration is here to stay – accelerated by pandemic lockdowns, there has been an ongoing increase in the use of public cloud services, and Gartner has forecasted worldwide public cloud spending to grow around 20%, or by almost USD 600 billion [1], in 2023. With more and more organizations utilizing cloud services and moving their operations to the cloud, there has also been a corresponding shift in malicious activity targeting cloud-based software and services, including Microsoft 365, a prominent and oft-used Software-as-a-Service (SaaS).

With the adoption and implementation of more SaaS products, the overall attack surface of an organization increases – this gives malicious actors additional opportunities to exploit and compromise a network, necessitating proper controls to be in place. This increased attack surface can leave organization’s open to cyber risks like cloud misconfigurations, supply chain attacks and zero-day vulnerabilities [2]. In order to achieve full visibility over cloud activity and prevent SaaS compromise, it is paramount for security teams to deploy sophisticated security measures that are able to learn an organization’s SaaS environment and detect suspicious activity at the earliest stage.

Darktrace Immediately Detects Hijacked Account

In May 2023, Darktrace observed a chain of suspicious SaaS activity on the network of a customer who was about to begin their trial of Darktrace/Cloud™ and Darktrace/Email™. Despite being deployed on the network for less than a week, Darktrace DETECT™ recognized that the legitimate SaaS account, belonging to an executive at the organization, had been hijacked. Darktrace/Email was able to provide full visibility over inbound and outbound mail and identified that the compromised account was subsequently used to launch an internal spear-phishing campaign.

If Darktrace RESPOND™ were enabled in autonomous response mode at the time of this compromise, it would have been able to take swift preventative action to disrupt the account compromise and prevent the ensuing phishing attack.

Account Hijack Attack Overview

Unusual External Sources for SaaS Credentials

On May 9, 2023, Darktrace DETECT/Cloud detected the first in a series of anomalous activities performed by a Microsoft 365 user account that was indicative of compromise, namely a failed login from an external IP address located in Virginia.

Figure 1: The failed login notice, as seen in Darktrace DETECT/Cloud. The notice includes additional context about the failed login attempt to the SaaS account.

Just a few minutes later, Darktrace observed the same user credential being used to successfully login from the same unusual IP address, with multi-factor authentication (MFA) requirements satisfied.

Figure 2: The “Unusual External Source for SaaS Credential Use” model breach summary, showing the successful login to the SaaS user account (with MFA), from the rare external IP address.

A few hours after this, the user credential was once again used to login from a different city in the state of Virginia, with MFA requirements successfully met again. Around the time of this activity, the SaaS user account was also observed previewing various business-related files hosted on Microsoft SharePoint, behavior that, taken in isolation, did not appear to be out of the ordinary and could have represented legitimate activity.

The following day, May 10, however, there were additional login attempts observed from two different states within the US, namely Texas and Florida. Darktrace understood that this activity was extremely suspicious, as it was highly improbable that the legitimate user would be able to travel over 2,500 miles in such a short period of time. Both login attempts were successful and passed MFA requirements, suggesting that the malicious actor was employing techniques to bypass MFA. Such MFA bypass techniques could include inserting malicious infrastructure between the user and the application and intercepting user credentials and tokens, or by compromising browser cookies to bypass authentication controls [3]. There have also been high-profile cases in the recent years of legitimate users mistakenly (and perhaps even instinctively) accepting MFA prompts on their token or mobile device, believing it to be a legitimate process despite not having performed the login themselves.

New Email Rule

On the evening of May 10, following the successful logins from multiple US states, Darktrace observed the Microsoft 365 user creating a new inbox rule, named “.’, in Microsoft Outlook from an IP located in Florida. Threat actors are often observed naming new email rules with single characters, likely to evade detection, but also for the sake of expediency so as to not expend any additional time creating meaningful labels.

In this case the newly created email rules included several suspicious properties, including ‘AlwaysDeleteOutlookRulesBlob’, ‘StopProcessingRules’ and “MoveToFolder”.

Firstly, ‘AlwaysDeleteOutlookRulesBlob’ suppresses or hides warning messages that typically appear if modifications to email rules are made [4]. In this case, it is likely the malicious actor was attempting to implement this property to obfuscate the creation of new email rules.

The ‘StopProcessingRules’ rule meant that any subsequent email rules created by the legitimate user would be overridden by the email rule created by the malicious actor [5]. Finally, the implementation of “MoveToFolder” would allow the malicious actor to automatically move all outgoing emails from the “Sent” folder to the “Deleted Items” folder, for example, further obfuscating their malicious activities [6]. The utilization of these email rule properties is frequently observed during account hijackings as it allows attackers to delete and/or forward key emails, delete evidence of exploitation and launch phishing campaigns [7].

In this incident, the new email rule would likely have enabled the malicious actor to evade the detection of traditional security measures and achieve greater persistence using the Microsoft 365 account.

Figure 3: Screenshot of the “New Email Rule” model breach. The Office365 properties associated with the newly modified Microsoft Outlook inbox rule, “.”, are highlighted in red.

Account Update

A few hours after the creation of the new email rule, Darktrace observed the threat actor successfully changing the Microsoft 365 user’s account password, this time from a new IP address in Texas. As a result of this action, the attacker would have locked out the legitimate user, effectively gaining full access over the SaaS account.

Figure 4: The model breach event log showing the user password and token change updates performed by the compromised SaaS account.

Phishing Emails

The compromised SaaS account was then observed sending a high volume of suspicious emails to both internal and external email addresses. Darktrace was able to identify that the emails attempting to impersonate the legitimate service DocuSign and contained a malicious link prompting users to click on the text “Review Document”. Upon clicking this link, users would be redirected to a site hosted on Adobe Express, namely hxxps://express.adobe[.]com/page/A9ZKVObdXhN4p/.

Adobe Express is a free service that allows users to create web pages which can be hosted and shared publicly; it is likely that the threat actor here leveraged the service to use in their phishing campaign. When clicked, such links could result in a device unwittingly downloading malware hosted on the site, or direct unsuspecting users to a spoofed login page attempting to harvest user credentials by imitating legitimate companies like Microsoft.

Figure 5: Screenshot of the phishing email, containing a malicious link hidden behind the “Review Document” text. The embedded link directs to a now-defunct page that was hosted on Adobe Express.

The malicious site hosted on Adobe Express was subsequently taken down by Adobe, possibly in response to user reports of maliciousness. Unfortunately though, platforms like this that offer free webhosting services can easily and repeatedly be abused by malicious actors. Simply by creating new pages hosted on different IP addresses, actors are able to continue to carry out such phishing attacks against unsuspecting users.

In addition to the suspicious SaaS and email activity that took place between May 9 and May 10, Darktrace/Email also detected the compromised account sending and receiving suspicious emails starting on May 4, just two days after Darktrace’s initial deployment on the customer’s environment. It is probable that the SaaS account was compromised around this time, or even prior to Darktrace’s deployment on May 2, likely via a phishing and credential harvesting campaign similar to the one detailed above.

Figure 6: Event logs of the compromised SaaS user, here seen breaching several Darktrace/Email model breaches on 4th May.

Darktrace Coverage

As the customer was soon to begin their trial period, Darktrace RESPOND was set in “human confirmation” mode, meaning that any preventative RESPOND actions required manual application by the customer’s security team.

If Darktrace RESPOND had been enabled in autonomous response mode during this incident, it would have taken swift mitigative action by logging the suspicious user out of the SaaS account and disabling the account for a defined period of time, in doing so disrupting the attack at the earliest possible stage and giving the customer the necessary time to perform remediation steps.  As it was, however, these RESPOND actions were suggested to the customer’s security team for them to manually apply.

Figure 7: Example of Darktrace RESPOND notices, in response to the anomalous user activity.

Nevertheless, with Darktrace DETECT/Cloud in place, visibility over the anomalous cloud-based activities was significantly increased, enabling the swift identification of the chain of suspicious activities involved in this compromise.

In this case, the prospective customer reached out to Darktrace directly through the Ask the Expert (ATE) service. Darktrace’s expert analyst team then conducted a timely and comprehensive investigation into the suspicious activity surrounding this SaaS compromise, and shared these findings with the customer’s security team.

Conclusão

Ultimately, this example of SaaS account compromise highlights Darktrace’s unique ability to learn an organization’s digital environment and recognize activity that is deemed to be unexpected, within a matter of days.

Due to the lack of obvious or known indicators of compromise (IoCs) associated with the malicious activity in this incident, this account hijack would likely have gone unnoticed by traditional security tools that rely on a rules and signatures-based approach to threat detection. However, Darktrace’s Self-Learning AI enables it to detect the subtle deviations in a device’s behavior that could be indicative of an ongoing compromise.

Despite being newly deployed on a prospective customer’s network, Darktrace DETECT was able to identify unusual login attempts from geographically improbable locations, suspicious email rule updates, password changes, as well as the subsequent mounting of a phishing campaign, all before the customer’s trial of Darktrace had even begun.

When enabled in autonomous response mode, Darktrace RESPOND would be able to take swift preventative action against such activity as soon as it is detected, effectively shutting down the compromise and mitigating any subsequent phishing attacks.

With the full deployment of Darktrace’s suite of products, including Darktrace/Cloud and Darktrace/Email, customers can rest assured their critical data and systems are protected, even in the case of hybrid and multi-cloud environments.

Credit: Samuel Wee, Senior Analyst Consultant & Model Developer

Appendices

References

[1] https://www.gartner.com/en/newsroom/press-releases/2022-10-31-gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-nearly-600-billion-in-2023

[2] https://www.upguard.com/blog/saas-security-risks

[3] https://www.microsoft.com/en-us/security/blog/2022/11/16/token-tactics-how-to-prevent-detect-and-respond-to-cloud-token-theft/

[4] https://learn.microsoft.com/en-us/powershell/module/exchange/disable-inboxrule?view=exchange-ps

[5] https://learn.microsoft.com/en-us/dotnet/api/microsoft.exchange.webservices.data.ruleactions.stopprocessingrules?view=exchange-ews-api

[6] https://learn.microsoft.com/en-us/dotnet/api/microsoft.exchange.webservices.data.ruleactions.movetofolder?view=exchange-ews-api

[7] https://blog.knowbe4.com/check-your-email-rules-for-maliciousness

Darktrace Model Detections

Darktrace DETECT/Cloud and RESPOND Models Breached:

SaaS / Access / Unusual External Source for SaaS Credential Use

SaaS / Unusual Activity / Multiple Unusual External Sources for SaaS Credential

Antigena / SaaS / Antigena Unusual Activity Block (RESPOND Model)

SaaS / Compliance / New Email Rule

Antigena / SaaS / Antigena Significant Compliance Activity Block

SaaS / Compromise / Unusual Login and New Email Rule (Enhanced Monitoring Model)

Antigena / SaaS / Antigena Suspicious SaaS Activity Block (RESPOND Model)

SaaS / Compromise / SaaS Anomaly Following Anomalous Login (Enhanced Monitoring Model)

SaaS / Compromise / Unusual Login and Account Update

Antigena / SaaS / Antigena Suspicious SaaS Activity Block (RESPOND Model)

IoC – Type – Description & Confidence

hxxps://express.adobe[.]com/page/A9ZKVObdXhN4p/ - Domain – Probable Phishing Page (Now Defunct)

37.19.221[.]142 – IP Address – Unusual Login Source

35.174.4[.]92 – IP Address – Unusual Login Source

MITRE ATT&CK Mapping

Tactic - Techniques

INITIAL ACCESS, PRIVILEGE ESCALATION, DEFENSE EVASION, PERSISTENCE

T1078.004 – Cloud Accounts

DISCOVERY

T1538 – Cloud Service Dashboards

CREDENTIAL ACCESS

T1539 – Steal Web Session Cookie

RESOURCE DEVELOPMENT

T1586 – Compromise Accounts

PERSISTENCE

T1137.005 – Outlook Rules

Probability yardstick used to communicate the probability that statements or explanations given are correct.
Continue reading
About the author
Min Kim
Cyber Security Analyst

Blog

Email

Darktrace/Email in Action: Why AI-Driven Email Security is the Best Defense Against Sustained Phishing Campaigns

Photo of man checking emails on laptopDefault blog imageDefault blog image
26
Sep 2023

Stopping the bad while allowing the good

Since its inception, email has been regarded as one of the most important tools for businesses, revolutionizing communication and allowing global teams to become even more connected. But besides organizations heavily relying on email for their daily operations, threat actors have also recognized that the inbox is one of the easiest ways to establish an initial foothold on the network.

Today, not only are phishing campaigns and social engineering attacks becoming more prevalent, but the level of sophistication of these attacks are also increasing with the help of generative AI tools that allow for the creation of hyper-realistic emails with minimal errors, effectively lowering the barrier to entry for threat actors. These diverse and stealthy types of attacks evade traditional email security tools based on rules and signatures, because they are less likely to contain the low-sophistication markers of a typical phishing attack.  

In a situation where the sky is the limit for attackers and security teams are lean, how can teams equip themselves to tackle these threats? How can they accurately detect increasingly realistic malicious emails and neutralize these threats before it is too late? And importantly, how can email security block these threats while allowing legitimate emails to flow freely?

Instead of relying on past attack data, Darktrace’s Self-Learning AI detects the slightest deviation from a user’s pattern of life and responds autonomously to contain potential threats, stopping novel attacks in their tracks before damage is caused. It doesn’t define ‘good’ and ‘bad’ like traditional email tools, rather it understands each user and what is normal for them – and what’s not.

This blog outlines how Darktrace/Email™ used its understanding of ‘normal’ to accurately detect and respond to a sustained phishing campaign targeting a real-life company.

Responding to a sustained phishing attack

Over the course of 24 hours, Darktrace detected multiple emails containing different subjects, all from different senders to different recipients in one organization. These emails were sent from different IP addresses, but all came from the same autonomous system number (ASN).

Figure 1: The sender freemail addresses and subject lines all followed a certain format. The subject lines followed the format of “<First name> <Last name>”, possibly to induce curiosity. The senders were all freemail accounts and contained first names, last names and some numbers, showing the attempts to make these email addresses appear legitimate.

The emails themselves had many suspicious indicators. All senders had no prior association with the recipient, and the emails generated a high general inducement score. This score is generated by structural and non-specific content analysis of the email – a high score indicates that the email is trying to induce the recipient into taking a particular action, which may lead to account compromise.

Additionally, each email contained a visually prominent link to a file storage service, hidden behind a shortened bit.ly link. The similarities across all these emails pointed to a sustained campaign targeting the organization by a single threat actor.

Figure 2: One of the emails is shown above. Like all the other emails, it contained a highly suspicious and shortened link.
Figure 3: In another one of the emails, the link observed had similar characteristics. But this email stands out from the rest. The sender's name seems to be randomly set – the 3 alphabets are close to each other on the keyboard.

With all these suspicious indicators, many models were breached. This drove up the anomaly score, causing Darktrace/Email to hold all suspicious emails from the recipients’ inboxes, safeguarding the recipients from potential account compromise and disallowing the threats from taking hold in the network.

Imagining a phishing attack without Darktrace/Email

So what could have happened if Darktrace had not withheld these emails, and the recipients had clicked on the links? File storage sites have a wide variety of uses that allow attackers to be creative in their attack strategy. If the user had clicked on the shortened link, the possible consequences are numerous. The link could have led to a login page for unsuspecting victims to input their credentials, or it could have hosted malware that would automatically download if the link was clicked. With the compromised credentials, threat actors could even bypass MFA, change email rules, or gain privileged access to a network. The downloaded malware might also be a keylogger, leading to cryptojacking, or could open a back door for threat actors to return to at a later time.

Figure 4: Darktrace/Email highlights suspicious link characteristics and provides an option to preview the pages.
Figure 5: At the point of writing, both links could not be reached. This could be because they were one-time unique links created specifically for the user, and can no longer be accessed once the campaign has ceased.

The limits of traditional email security tools

Secure email gateways (SEGs) and static AI security tools may have found it challenging to detect this phishing campaign as malicious. While Darktrace was able to correlate these emails to determine that a sustained phishing campaign was taking place, the pattern among these emails is far too generic for specific rules as set in traditional security tools. If we take the characteristic of the freemail account sender as an example, setting a rule to block all emails from freemail accounts may lead to more legitimate emails being withheld, since these addresses have a variety of uses.

With these factors in mind, these emails could have easily slipped through traditional security filters and led to a devastating impact on the organization.

Conclusão

As threat actors step up their attacks in sophistication, prioritizing email security is more crucial than ever to preserving a safe digital environment. In response to these challenges, Darktrace/Email offers a set-and-forget solution that continuously learns and adapts to changes in the organization.  

Through an evolving understanding of every environment in which it is deployed, its threat response becomes increasingly precise in neutralizing only the bad, while allowing the good – delivering email security that doesn’t come at the expense of business growth.

Continue reading
About the author

Boas notícias para sua empresa.
Más notícias para os bandidos.

Comece seu teste gratuito

Comece seu teste gratuito

Entrega flexível
Cloud-based deployment.
Instalação rápida
Apenas 1 hora para a instalação - e ainda menos para um teste de segurança por e-mail.
Escolha seu percurso
Experimente a IA de auto-aprendizagem onde quiser - incluindo nuvem, rede ou e-mail.
Sem compromisso
Acesso total ao Darktrace Threat Visualizer e três relatórios de ameaças feitos sob medida, sem compromisso.
For more information, please see our Privacy Notice.
Thanks, your request has been received
A member of our team will be in touch with you shortly.
YOU MAY FIND INTERESTING
Oops! Alguma coisa deu errado ao enviar o formulário.

Solicite uma demonstração

Entrega flexível
Você pode instalá-lo virtualmente ou com hardware.
Instalação rápida
Apenas 1 hora para a instalação - e ainda menos para um teste de segurança por e-mail.
Escolha seu percurso
Experimente a IA de auto-aprendizagem onde quiser - incluindo nuvem, rede ou e-mail.
Sem compromisso
Acesso total ao Darktrace Threat Visualizer e três relatórios de ameaças feitos sob medida, sem compromisso.
Obrigado! Seu pedido foi recebido!
Oops! Alguma coisa deu errado ao enviar o formulário.